人‑机器人运动数据映射的方法及系统

    公开(公告)号:CN106600000A

    公开(公告)日:2017-04-26

    申请号:CN201611102793.3

    申请日:2016-12-05

    CPC classification number: G06N3/08 G06N20/00

    Abstract: 本发明提供了一种人‑机器人运动数据映射的方法。该方法包括:获取训练数据,所述训练数据包括人体运动数据和相应运动的机器人样本数据;以所述人体运动数据作为输入,以所述机器人样本数据作为期望的输出,通过训练深度学习网络获得深度学习模型,以得到人‑机器人运动数据之间的映射关系。本发明基于深度学习的方法实现人‑机器人运动数据的映射,避免了大量反复的运动学求解,可以更灵活精确地驱动机器人进行运动。

    用于大规模数据标定的迁移学习方法及系统

    公开(公告)号:CN106599922B

    公开(公告)日:2021-08-24

    申请号:CN201611165253.X

    申请日:2016-12-16

    Abstract: 本发明提供一种迁移学习方法,该方法利用基于已标定的源域数据训练的至少两个分类器对待标定的目标域数据进行初次标定,根据标定结果将目标域数据划分为候选集和余部;在具有相同标定的源域数据组和候选集中目标域数据组之间进行迁移变换,生成新源域和新候选集;基于在新源域上训练的分类器对新候选集中的目标域数据进行标定,并利用新候选集中各数据的标定结果更新对未经变换的候选集中各数据的二次标定;以及基于经更新标定后的候选集训练分类器,并利用该分类器完成对余部中目标数据的标定。该方法缩短了迁移的时间,提高了迁移标定的效率,更适用于大规模数据的标定。

    一种面向传感器动态增加的行为识别模型更新方法及系统

    公开(公告)号:CN108717548B

    公开(公告)日:2020-09-15

    申请号:CN201810315805.3

    申请日:2018-04-10

    Abstract: 本发明涉及一种面向传感器动态增加的行为识别模型更新方法及系统,包括:模型构建步骤,通过初始传感器获取用户行为的初始数据,并提取初始特征数据以构建行为识别模型;增量特征数据获取步骤,通过该初始传感器和新增传感器获取用户行为的增量数据,定义增量特征并提取增量特征数据;模型更新决策步骤,以该行为识别模型中的决策树预测结果之间的平均互信息,及该预测结果和与其对应的用户实际行为之间的互信息,获得该行为识别模型的每棵决策树的多样性评分,将多样性评分小于更新阈值的决策树作为待更新决策树;模型动态更新步骤,以该增量特征数据更新所有待更新决策树,以实现该行为识别模型的更新。

    基于联邦随机森林学习的健康监护模型构建方法、系统

    公开(公告)号:CN111178408B

    公开(公告)日:2023-06-20

    申请号:CN201911317900.8

    申请日:2019-12-19

    Inventor: 陈益强 胡春雨

    Abstract: 本发明涉及一种基于联邦随机森林学习的健康监护模型构建方法,包括:于任一客户端,对本地的当前数据集进行分类,以构建客户端决策树的当前节点,获取该当前节点的分裂属性、分裂值和信息增益为该客户端的中间结果,并将该中间结果发送至协作端;于该协作端,从所有客户端的中间结果中选取具有最大信息增益者对应的分裂属性和分裂值作为分裂信息,并将该分裂信息分发至所有客户端;于任一该客户端,根据该分裂信息对本地的当前数据集进行划分;并以划分后的当前数据集构建本地的当前节点的左右子树;重复顺序执行上述步骤以进行迭代,直到该当前节点满足迭代终止条件,以当前的客户端决策树组成的随机森林模型为客户端健康监护模型。

    一种类别增量行为识别方法和系统

    公开(公告)号:CN108764282A

    公开(公告)日:2018-11-06

    申请号:CN201810354381.1

    申请日:2018-04-19

    CPC classification number: G06K9/6282 G06K9/6256

    Abstract: 本发明涉及一种类别增量行为识别方法和系统,其特征在于,包括:获取用户固定行为类别的初始行为数据,并利用该初始行为数据及其所属行为类别训练随机森林模型,该随机森林模型中决策树用分层嵌套包围盒的形式来表示,该决策树中每个节点对应一个包围盒;获取用户新增行为类别的行为数据,根据该新增行为数据及其类别,得到该新增行为数据对应的新包围盒,根据该新包围盒与决策树当前节点包围盒的关系,向该决策树中插入新的节点或分裂该决策树的叶子节点,以更新现有随机森林行为识别模型,得到增量行为识别模型,并使用该增量行为识别模型识别用户的行为。

    基于联邦随机森林学习的健康监护模型构建方法、系统

    公开(公告)号:CN111178408A

    公开(公告)日:2020-05-19

    申请号:CN201911317900.8

    申请日:2019-12-19

    Inventor: 陈益强 胡春雨

    Abstract: 本发明涉及一种基于联邦随机森林学习的健康监护模型构建方法,包括:于任一客户端,对本地的当前数据集进行分类,以构建客户端决策树的当前节点,获取该当前节点的分裂属性、分裂值和信息增益为该客户端的中间结果,并将该中间结果发送至协作端;于该协作端,从所有客户端的中间结果中选取具有最大信息增益者对应的分裂属性和分裂值作为分裂信息,并将该分裂信息分发至所有客户端;于任一该客户端,根据该分裂信息对本地的当前数据集进行划分;并以划分后的当前数据集构建本地的当前节点的左右子树;重复顺序执行上述步骤以进行迭代,直到该当前节点满足迭代终止条件,以当前的客户端决策树组成的随机森林模型为客户端健康监护模型。

    用于大规模数据标定的迁移学习方法及系统

    公开(公告)号:CN106599922A

    公开(公告)日:2017-04-26

    申请号:CN201611165253.X

    申请日:2016-12-16

    CPC classification number: G06K9/6269 G06K9/6227 G06K9/6282

    Abstract: 本发明提供一种迁移学习方法,该方法利用基于已标定的源域数据训练的至少两个分类器对待标定的目标域数据进行初次标定,根据标定结果将目标域数据划分为候选集和余部;在具有相同标定的源域数据组和候选集中目标域数据组之间进行迁移变换,生成新源域和新候选集;基于在新源域上训练的分类器对新候选集中的目标域数据进行标定,并利用新候选集中各数据的标定结果更新对未经变换的候选集中各数据的二次标定;以及基于经更新标定后的候选集训练分类器,并利用该分类器完成对余部中目标数据的标定。该方法缩短了迁移的时间,提高了迁移标定的效率,更适用于大规模数据的标定。

    一种面向传感器动态增加的行为识别模型更新方法及系统

    公开(公告)号:CN108717548A

    公开(公告)日:2018-10-30

    申请号:CN201810315805.3

    申请日:2018-04-10

    Abstract: 本发明涉及一种面向传感器动态增加的行为识别模型更新方法及系统,包括:模型构建步骤,通过初始传感器获取用户行为的初始数据,并提取初始特征数据以构建行为识别模型;增量特征数据获取步骤,通过该初始传感器和新增传感器获取用户行为的增量数据,定义增量特征并提取增量特征数据;模型更新决策步骤,以该行为识别模型中的决策树预测结果之间的平均互信息,及该预测结果和与其对应的用户实际行为之间的互信息,获得该行为识别模型的每棵决策树的多样性评分,将多样性评分小于更新阈值的决策树作为待更新决策树;模型动态更新步骤,以该增量特征数据更新所有待更新决策树,以实现该行为识别模型的更新。

Patent Agency Ranking