-
公开(公告)号:CN110782006A
公开(公告)日:2020-02-11
申请号:CN201910952242.3
申请日:2019-10-09
Applicant: 中国科学院计算技术研究所
IPC: G06N3/04
Abstract: 本发明提供一种生成复杂神经网络的方法,包括:1)从已有的神经网络结构的种群中选择具有高适应度的两个作为父代个体,其中,所述两个父代个体之间具有以卷积层为单位的异构结构;2)将一个卷积层作为最小的操作单位,对所述两个父代个体执行交叉操作以得到子代个体。本发明可以根据已有网络结构方面的经验,有方向性地改变神经网络结构。本发明在不对卷积神经网络进行任何附加训练的情况下,可以实现功能保持,大大节省计算代价。如果对卷积神经网络进行额外训练,可以体现出新产生的神经结构表现更加优秀。在同源结构进行融合的过程中,本发明将已有参数和结构作为指导,能够迅速实现基于功能保持的神经网络结构搜索。
-
公开(公告)号:CN111353587A
公开(公告)日:2020-06-30
申请号:CN202010162181.3
申请日:2020-03-10
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种深度神经网络的可解释生成方法,包括:S1、挖掘推理路径:获取预训练网络和数据集,采用关键数据路由路径挖掘所述数据集中每一条数据在预训练网络的神经网络中对应的推理路径;S2、聚合推理路径:将同一类数据的推理路径进行聚合,得到该类数据对应的网络结构;S3、组合网络结构:将同一类数据对应的网络结构进行组合,得到针对特定任务进行推理的子网络,运用子网络进行针对于若干类网络的分类任务,可有效节省网络的存储和计算消耗。
-