-
公开(公告)号:CN119669663A
公开(公告)日:2025-03-21
申请号:CN202411634098.6
申请日:2024-11-15
Applicant: 中国科学院计算技术研究所
IPC: G06F18/15 , G06F18/213 , G06F18/2131 , G06N3/0455 , G06N3/042 , G06N3/045 , G06N3/08 , G06F123/02
Abstract: 本发明提供一种用于多元时间序列分析的外插模型及其训练方法,模型包括:数据获取模块,用于获取所有传感器的待外插时序数据和元数据,待外插时序数据包括各传感器在预定时间段内的时序数据,所有传感器中包括缺失全部时序数据的目标传感器且其时序数据以预设缺失值替代;元数据图建模模块,用于基于待外插时序数据和元数据提取各传感器间的动态时空关系,根据动态时空关系构建元数据图;编码器,用于基于预定义图和元数据图编码待外插时序数据,得到编码结果;解码器,用于基于预定义图和元数据图对编码结果进行解码,得到解码结果;聚合层,用于聚合编码结果和解码结果,得到外插结果;其中,采用对抗训练方式训练得到经训练的外插模型。
-
公开(公告)号:CN112949628B
公开(公告)日:2023-04-18
申请号:CN202110168050.0
申请日:2021-02-07
Applicant: 中国科学院计算技术研究所
IPC: G06V10/25 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于嵌入‑混合的轨迹数据增强及轨迹识别方法。所述轨迹数据增强方法包括:将轨迹数据中的每条轨迹转换成相应感兴趣点的集合;基于所有感兴趣点的总集计算包含每个感兴趣点编码的嵌入矩阵;基于所述嵌入矩阵确定每一条轨迹的轨迹编码向量;对任意两条或更多条轨迹的编码向量进行加权融合,获得新的编码向量;按照步骤S3的逆过程,对所获得的编码向量进行解码获得新的轨迹数据。本发明的轨迹数据增强方法可以有效地应用在轨迹数据上,可以同时针对轨迹数据的顺序性、空间性、语义性进行数据增强工作。既不会破坏轨迹数据的顺序性,又能考虑到轨迹数据的空间性和语义性。进而可以达到提升轨迹识别模型精度的效果。
-
公开(公告)号:CN119494967A
公开(公告)日:2025-02-21
申请号:CN202411433967.9
申请日:2024-10-15
Applicant: 中国科学院计算技术研究所 , 航天东方红卫星有限公司
IPC: G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0442 , G06N3/08
Abstract: 本发明提供一种用于匿名时空轨迹识别的模型,包括:原始轨迹图构建模块,用于根据匿名用户在一段时间内生成的轨迹数据,构建原始轨迹图,其包括表示轨迹数据的多个签到记录的多个节点和表示节点间关系的多条边,对原始轨迹图的多个节点进行嵌入表示,得到多个节点的空间信息;多尺度轨迹图构建模块,用于基于原始轨迹图按预设的多种采样率构建不同尺度的多个轨迹图;轨迹空间信息提取模块,用于基于多个节点的空间信息提取多个轨迹图中每个轨迹图的各个节点的空间特征,聚合多个轨迹图中每个轨迹图的各个节点的空间特征,得到多尺度的轨迹空间特征;轨迹识别模块,用于根据轨迹空间特征识别轨迹数据属于各个已知用户的概率值。
-
公开(公告)号:CN116432024A
公开(公告)日:2023-07-14
申请号:CN202310226232.8
申请日:2023-03-03
Applicant: 中国科学院计算技术研究所
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/08
Abstract: 本发明实施例提供了一种用于机动目标的轨迹观测数据去噪模型的训练方法,所述模型包括预处理单元和去噪自编码器,所述方法包括:获取训练集,训练集中每个样本包括输入数据和标签,输入数据为传感器在预定时间间隔内观测目标运动轨迹得到的多帧观测数据,标签为对应时间内目标的真实运动轨迹;利用训练集训练模型,并基于计算的损失更新模型的参数,其中,预处理单元对输入数据进行降噪预处理,去噪自编码器对降噪预处理后的输入数据进行编解码,模型基于去噪自编码器编解码后的输出得到去噪后的运动轨迹,本发明实施例通过该训练方法训练得到的模型能对观测数据进行有效去噪的能力,从而提高模型对机动目标的运动轨迹估计的准确性。
-
公开(公告)号:CN112949628A
公开(公告)日:2021-06-11
申请号:CN202110168050.0
申请日:2021-02-07
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供了一种基于嵌入‑混合的轨迹数据增强及轨迹识别方法。所述轨迹数据增强方法包括:将轨迹数据中的每条轨迹转换成相应感兴趣点的集合;基于所有感兴趣点的总集计算包含每个感兴趣点编码的嵌入矩阵;基于所述嵌入矩阵确定每一条轨迹的轨迹编码向量;对任意两条或更多条轨迹的编码向量进行加权融合,获得新的编码向量;按照步骤S3的逆过程,对所获得的编码向量进行解码获得新的轨迹数据。本发明的轨迹数据增强方法可以有效地应用在轨迹数据上,可以同时针对轨迹数据的顺序性、空间性、语义性进行数据增强工作。既不会破坏轨迹数据的顺序性,又能考虑到轨迹数据的空间性和语义性。进而可以达到提升轨迹识别模型精度的效果。
-
公开(公告)号:CN111126563B
公开(公告)日:2023-09-29
申请号:CN201911166620.1
申请日:2019-11-25
Applicant: 中国科学院计算技术研究所
IPC: G06N3/0442 , G06N3/048 , G06N3/084
Abstract: 本发明提出一种基于孪生网络的时空数据的目标识别方法及系统。构建包括两个子网的孪生网络模型,获取训练样本(x1,x2,y),x1和x2表示包括兴趣点的时空数据,y表示x1和x2是否属于相同目标;将x1和x2分别输入至孪生网络模型的子网,得到特征向量v(x1)和v(x2),通过距离度量得到特征向量v(x1)和v(x2)间的距离,根据距离与标签y之间的损失反向传播训练孪生网络模型,得到最终网络模型;取最终网络模型的子网作为目标识别模型,将待链接目标的时空数据输入目标识别模型,得到待链接目标的时空数据的待链接向量,将已知目标的时空数据输入目标识别模型,得到已知目标的时空数据的已链接向量,根据待链接向量和已链接向量之间的相似关系,为待链接目标的时空数据链接目标。
-
公开(公告)号:CN111488984B
公开(公告)日:2023-07-21
申请号:CN202010259417.5
申请日:2020-04-03
Applicant: 中国科学院计算技术研究所
Abstract: 本发明实施例提供了一种轨迹预测方法,包括根据用户的实时轨迹数据,使用经用于训练轨迹预测模型的方法得到的轨迹预测模型进行轨迹预测,得到轨迹预测结果,本发明将时空轨迹数据分为近期轨迹数据、短期历史数据和长期历史数据,利用第一多头注意力机制网络的编码模型捕捉长期历史数据中各轨迹点的长期时空关系,利用循环神经网络编码模型捕捉短期历史数据中各轨迹点的短期时空关系,并利用第二多头注意力机制网络的编码模型根据长期和短期时空关系的相似度对短期时空关系进行调整,实现了历史轨迹的全局依赖,用近期轨迹数据和经调整后的短期时空关系训练第三多头注意力机制网络的解码模型后将其作为轨迹预测模型,提高了轨迹预测的准确性。
-
公开(公告)号:CN112766339A
公开(公告)日:2021-05-07
申请号:CN202110029664.0
申请日:2021-01-11
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种轨迹识别模型训练方法及轨迹识别方法。本发明的模型训练方法包括:S1、通过构建基于独热编码向量的语料对的方式将目标轨迹数据编码为轨迹语义向量;S2、构建用于对轨迹语义向量进行评估的循环神经网络和用于对评估结果进行分类的分类器;S3、利用标记轨迹数据对所述循环神经网络和分类器进行训练。本发明的轨迹识别方法中,采用了新的轨迹语义向量计算方法,该方法可以将不定长的轨迹段投影到定长的向量空间中。通过采用本发明的模型训练方法可以使得网络学习到不同类别的轨迹特征,通过循环神经网络识别轨迹类别。
-
公开(公告)号:CN111488984A
公开(公告)日:2020-08-04
申请号:CN202010259417.5
申请日:2020-04-03
Applicant: 中国科学院计算技术研究所
Abstract: 本发明实施例提供了一种轨迹预测方法,包括根据用户的实时轨迹数据,使用经用于训练轨迹预测模型的方法得到的轨迹预测模型进行轨迹预测,得到轨迹预测结果,本发明将时空轨迹数据分为近期轨迹数据、短期历史数据和长期历史数据,利用第一多头注意力机制网络的编码模型捕捉长期历史数据中各轨迹点的长期时空关系,利用循环神经网络编码模型捕捉短期历史数据中各轨迹点的短期时空关系,并利用第二多头注意力机制网络的编码模型根据长期和短期时空关系的相似度对短期时空关系进行调整,实现了历史轨迹的全局依赖,用近期轨迹数据和经调整后的短期时空关系训练第三多头注意力机制网络的解码模型后将其作为轨迹预测模型,提高了轨迹预测的准确性。
-
公开(公告)号:CN111242235A
公开(公告)日:2020-06-05
申请号:CN202010059647.7
申请日:2020-01-19
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
IPC: G06K9/62
Abstract: 本发明公开了一种相似特征测试数据集生成方法,包括:S1、选取多个不同的初始评价网络,再分别对所述初始评价网络进行训练,得到多个应用评价网络;S2、获取与目标数据集格式相同的样本数据集;S3、通过数据校正模型删减样本数据集中数据的个数,得到生成数据集;S4、使用每个所述应用评价网络比较S3中的生成数据集和目标数据集,计算得到偏差比;S5、若所述偏差比在预设的阈值范围内,将S3中的生成数据集作为测试数据集;若所述偏差比不在预设的阈值范围内,在S3中的生成数据集中增加数据,将增加数据后的生成数据集作为新的样本数据集,再重复执行S3至S4,直至偏差比在预设的阈值范围内,并将最后一次的生成数据集作为测试数据集。
-
-
-
-
-
-
-
-
-