-
公开(公告)号:CN107730451B
公开(公告)日:2020-06-05
申请号:CN201710911893.9
申请日:2017-09-29
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于深度残差网络的压缩感知重建方法和系统,包括:获取原始图像信号作为训练数据,并通过尺度变换和分割处理将训练数据分割为多个图像块;根据每个图像块的亮度分量和压缩感知理论模型,获得亮度分量对应的测量值;通过全连接网络对测量值进行线性映射处理,得到初步重建结果;将初步重建结果输入深度残差网络,训练得到估计残差值;将估计残差值与初步重建结果进行融合,生成重建信号。由此,本发明通过引入深度残差网络参与信号的重建,不仅实现对测量值到图像的还原重建还用到深度残差网络仅学习与目标之间的差异这一特点,提升了还原信号的质量。
-
公开(公告)号:CN107730451A
公开(公告)日:2018-02-23
申请号:CN201710911893.9
申请日:2017-09-29
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于深度残差网络的压缩感知重建方法和系统,包括:获取原始图像信号作为训练数据,并通过尺度变换和分割处理将训练数据分割为多个图像块;根据每个图像块的亮度分量和压缩感知理论模型,获得亮度分量对应的测量值;通过全连接网络对测量值进行线性映射处理,得到初步重建结果;将初步重建结果输入深度残差网络,训练得到估计残差值;将估计残差值与初步重建结果进行融合,生成重建信号。由此,本发明通过引入深度残差网络参与信号的重建,不仅实现对测量值到图像的还原重建还用到深度残差网络仅学习与目标之间的差异这一特点,提升了还原信号的质量。
-