-
公开(公告)号:CN119442131A
公开(公告)日:2025-02-14
申请号:CN202411430489.6
申请日:2024-10-14
Applicant: 中国科学院计算技术研究所
IPC: G06F18/25 , G06F18/214 , G06F18/213 , G06N3/045 , G06N3/08
Abstract: 本发明提供了一种基于多尺度融合的多元时间序列预测模型构建方法,所述方法包括:步骤S1、获取训练数据集,所述训练数据集包括多个预设时间段的多元时间序列数据;步骤S2、构建初始模型;步骤S3、以多元时间序列数据作为输入,多元时间序列数据的下一个时间段的多元时间序列数据作为预测输出,采用训练数据集基于预设的损失函数训练初始模型直至收敛,得到多元时间序列预测模型。本发明构建的多元时间序列预测模型不仅能够提取不同尺度下的时域和频域信息,还能对不同尺度下的时域信息和频域信息进行对齐融合,以充分利用多元时间序列数据的时域信息和频域信息实现多元时间序列数据的精准预测。
-
公开(公告)号:CN119129768A
公开(公告)日:2024-12-13
申请号:CN202410834572.3
申请日:2024-06-26
Applicant: 中国科学院计算技术研究所
IPC: G06N20/00 , G06F18/214 , G06F18/27 , G06F123/02
Abstract: 本发明实施例提供了一种训练学生模型的方法,包括:获取第一训练集,其包括多个未经缺失处理的原始样本和对应的标签;获取利用原始样本和标签训练得到教师模型,其包括用于从原始样本提取教师表征的特征提取器和用于根据教师表征得到教师预测结果的回归层;利用多种缺失率对每个原始样本进行处理,得到对应的缺失样本,所有缺失样本和对应的标签组成第二训练集;获取学生模型,其包括用于从缺失样本提取学生表征的特征提取器和用于根据学生表征得到学生预测结果的回归层;利用第二训练集、教师表征和教师预测结果对学生模型进行训练,训练时,基于表征损失、预测结果损失、对比损失和绝对误差损失加权的总损失更新学生模型的参数。
-