-
公开(公告)号:CN113436616B
公开(公告)日:2022-08-02
申请号:CN202110594183.4
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本申请提出一种多领域自适应的端到端语音识别方法,所述方法包括:提取待识别语音的第一特征;将所述第一特征和领域标签输入训练好的端到端语音识别模型;所述领域标签是为所述待识别语音的预先设定的口音标签;基于所述训练好的端到端语音识别模型,根据所述领域标签提取第二特征,将所述第一特征与所述第二特征拼接后进行编码得到第三特征;对所述第三特征进行解码,得到多条候选文本,输出第一文本候选列表,所述第一文本候选列表包括所述多条候选文本。本申请通过使用多领域自适应的方法,利用丰富资源领域预训练模型、多目标领域数据及多目标领域鉴别特征来提升在多个目标领域上的语音识别性能。
-
公开(公告)号:CN113436619A
公开(公告)日:2021-09-24
申请号:CN202110594164.1
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/06 , G10L15/08 , G10L19/18 , G10L25/18 , G10L25/24 , G10L25/27 , G10L25/30 , G10L25/45 , G10L25/54 , H04L9/32 , G10L15/14
Abstract: 本发明提供了一种语音识别解码的方法及装置。语音识别解码方法包括:确定待识别语音的N个子帧所对应的对数梅尔谱特征序列;通过经训练的神经网络编码器,处理所述对数梅尔谱特征序列,得到所述N个子帧各自对应的字符或者空白符的发射概率;根据预先确定的第一加权有限状态转移器以及所述N个子帧各自对应的的字符或者空白符的发射概率,采用束搜索算法搜索分数最高的词语序列。相比于传统的语音识别系统,本申请省略了帧级别对齐的流程,简化了训练和解码的流程;相比于端到端语音识别系统,在束搜索算法过程中使用加权有限状态转移器加快解码速度,高效地利用训练音频数据之外的文本数据,可以在多种领域快速部署语音识别系统。
-
公开(公告)号:CN113436616A
公开(公告)日:2021-09-24
申请号:CN202110594183.4
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本申请提出一种多领域自适应的端到端语音识别方法,所述方法包括:提取待识别语音的第一特征;将所述第一特征和领域标签输入训练好的端到端语音识别模型;所述领域标签是为所述待识别语音的预先设定的口音标签;基于所述训练好的端到端语音识别模型,根据所述领域标签提取第二特征,将所述第一特征与所述第二特征拼接后进行编码得到第三特征;对所述第三特征进行解码,得到多条候选文本,输出第一文本候选列表,所述第一文本候选列表包括所述多条候选文本。本申请通过使用多领域自适应的方法,利用丰富资源领域预训练模型、多目标领域数据及多目标领域鉴别特征来提升在多个目标领域上的语音识别性能。
-
公开(公告)号:CN113436619B
公开(公告)日:2022-08-26
申请号:CN202110594164.1
申请日:2021-05-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/06 , G10L15/08 , G10L19/18 , G10L25/18 , G10L25/24 , G10L25/27 , G10L25/30 , G10L25/45 , G10L25/54 , H04L9/32 , G10L15/14
Abstract: 本发明提供了一种语音识别解码的方法及装置。语音识别解码方法包括:确定待识别语音的N个子帧所对应的对数梅尔谱特征序列;通过经训练的神经网络编码器,处理所述对数梅尔谱特征序列,得到所述N个子帧各自对应的字符或者空白符的发射概率;根据预先确定的第一加权有限状态转移器以及所述N个子帧各自对应的的字符或者空白符的发射概率,采用束搜索算法搜索分数最高的词语序列。相比于传统的语音识别系统,本申请省略了帧级别对齐的流程,简化了训练和解码的流程;相比于端到端语音识别系统,在束搜索算法过程中使用加权有限状态转移器加快解码速度,高效地利用训练音频数据之外的文本数据,可以在多种领域快速部署语音识别系统。
-
公开(公告)号:CN108629412A
公开(公告)日:2018-10-09
申请号:CN201710152727.5
申请日:2017-03-15
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06N3/08
Abstract: 本发明提供了一种基于无网格最大互信息准则的神经网络训练加速方法,本发明的方法通过对无网格最大互信息准则(LFMMI准则)下的神经网络CE准则输出端进行低秩转换,将原有的高秩矩阵模块拆分为两个低秩矩阵模块,拆分后的两个低秩矩阵模块内的子阵相乘最后的维度和之前的全连接矩阵一致,在保证神经网络CE准则输出端总体维度不变的情况下,利用改造后的低维度子阵进行神经网络训练,从而简化了运算结构,使神经网络的输出层前向计算和后向计算占据训练时间比例明显减小,加快了神经网络的训练。
-
公开(公告)号:CN114783443B
公开(公告)日:2024-11-01
申请号:CN202210325453.6
申请日:2022-03-30
Applicant: 中国科学院声学研究所
Abstract: 本申请提出一种语音识别模型的个性化联邦学习方法和系统,应用于中心端和多个客户端,在中心端,该方法包括:利用本地有标注语音样本进行有监督的训练语音识别模型,获得所述语音识别模型的种子模型,所述种子模型包括特征提取器及分类器;所述特征提取器用于处理多个客户端输入的语音信息,确定多个客户端中每个客户端的语音信息的个性化特征;利用所述多个客户端中每个客户端的语音信息的个性化特征对所述分类器进行半监督训练,获得训练好的分类器;将所述训练好的分类器传递至所述多个客户端中每个客户端。本申请通过将语音识别模型的特征提取器与分类器进行解耦优化的方式实现个性化联邦学习,有效提升语音识别模型性能,降低错误识别率。
-
公开(公告)号:CN114783425B
公开(公告)日:2024-10-01
申请号:CN202210326775.2
申请日:2022-03-30
Applicant: 中国科学院声学研究所
Abstract: 本申请涉及一种基于私有参数的语音识别联邦学习方法和系统,应用于中心端和多个客户端,在所述中心端,所述方法包括:利用本地有标注语音样本进行有监督地训练语音识别模型,获得所述语音识别模型的种子模型;根据所述种子模型确定第一私有参数和第一共享参数;根据多个第二共享参数更新所述第一共享参数;所述多个第二共享参数由多个客户端上传得到;将更新后的所述第一共享参数传递至所述多个客户端中每个客户端。本申请实施例利用模型中的私有参数实现对每个客户端的个性化建模,从而可以通过一次训练产生针对多个客户端的个性化语音识别模型,有效提升语音识别模型在每个客户端的性能。
-
公开(公告)号:CN111179918B
公开(公告)日:2022-10-14
申请号:CN202010106791.1
申请日:2020-02-20
Applicant: 中国科学院声学研究所 , 中科信利(广州)技术有限公司
Abstract: 本发明实施例提供了一种联结主义时间分类和截断式注意力联合在线语音识别技术。构建了基于编码器、解码器、截断式注意力和联结主义时间分类器的语音识别神经网络模型,采用交叉熵准则和联结主义时间分类准则训练该神经网络模型;将语音流输入解码器,将存留的汉字序列输入编码器,利用截断式注意力机制截取有效的语音片段;根据截取的语音片段,对每条存留的汉字序列预测多个汉字,并于之构成一个新的汉字序列,并评分;联结主义时间分类器将解码拓展的多组汉字序列和已接收的语音对齐,并评分;对两种评分取平均,对各汉字序列进行剪枝;当满足终止条件时输出识别结果。该方法很大程度提升在线语音识别的性能。
-
公开(公告)号:CN114783443A
公开(公告)日:2022-07-22
申请号:CN202210325453.6
申请日:2022-03-30
Applicant: 中国科学院声学研究所
Abstract: 本申请提出一种语音识别模型的个性化联邦学习方法和系统,应用于中心端和多个客户端,在中心端,该方法包括:利用本地有标注语音样本进行有监督的训练语音识别模型,获得所述语音识别模型的种子模型,所述种子模型包括特征提取器及分类器;所述特征提取器用于处理多个客户端输入的语音信息,确定多个客户端中每个客户端的语音信息的个性化特征;利用所述多个客户端中每个客户端的语音信息的个性化特征对所述分类器进行半监督训练,获得训练好的分类器;将所述训练好的分类器传递至所述多个客户端中每个客户端。本申请通过将语音识别模型的特征提取器与分类器进行解耦优化的方式实现个性化联邦学习,有效提升语音识别模型性能,降低错误识别率。
-
公开(公告)号:CN114783425A
公开(公告)日:2022-07-22
申请号:CN202210326775.2
申请日:2022-03-30
Applicant: 中国科学院声学研究所
Abstract: 本申请涉及一种基于私有参数的语音识别联邦学习方法和系统,应用于中心端和多个客户端,在所述中心端,所述方法包括:利用本地有标注语音样本进行有监督地训练语音识别模型,获得所述语音识别模型的种子模型;根据所述种子模型确定第一私有参数和第一共享参数;根据多个第二共享参数更新所述第一共享参数;所述多个第二共享参数由多个客户端上传得到;将更新后的所述第一共享参数传递至所述多个客户端中每个客户端。本申请实施例利用模型中的私有参数实现对每个客户端的个性化建模,从而可以通过一次训练产生针对多个客户端的个性化语音识别模型,有效提升语音识别模型在每个客户端的性能。
-
-
-
-
-
-
-
-
-