-
公开(公告)号:CN117710808A
公开(公告)日:2024-03-15
申请号:CN202311566294.X
申请日:2023-11-22
Applicant: 中南林业科技大学
IPC: G06V20/10 , G06V10/44 , G06N20/00 , G06N3/0442 , G06N3/08
Abstract: 一种森林地上生物量的预测方法,包括以下步骤;1)光学数据的获取及预处理;2)对目标地的SAR数据进行预处理;3)光学与SAR影像的特征提取;4)选出两个AGB相关系数最高的两个SAR变量与相关性性绝对值大于0.1的植被指数与生物物理参数相结合,得到COSI;5)利用PIO迭代过程来优化BiLSTM神经网络模型的COSI1参数和COSI2参数;6)将隐藏层节点数链接到BiLSTM层,初始学习率和L2正则化系数的最优参数输入至BiLSTM神经网络模型里面;获得了AGB的预测值。本发明所提出的方法在AGB反演方面更具优势。与其他三个模型相比,RMSE的相对改善率高达43.6%。