一种基于分类回归树和AdaBoost的眼底图像视网膜血管分割方法

    公开(公告)号:CN104809480B

    公开(公告)日:2018-06-19

    申请号:CN201510262249.4

    申请日:2015-05-21

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于分类回归树和AdaBoost的眼底图像视网膜血管分割方法,该方法为眼底图中的每个像素点构造一个包括局部特征、形态学特征和像素的向量场散度特征在内的36维特征向量,用以判定其是否为血管上的像素。分类计算时,以分类回归树作为弱分类器对样本集分类,然后对AdaBoost分类器进行训练得到强分类器,并由此完成各个像素点的分类判定,得到最后的分割结果。该方法对血管主干部分提取较好,对于高亮度病灶区的处理很有优势,适合进行后期处理,为主要血管的病变提供了直观结果,适用于眼底图像的计算机辅助定量分析和疾病诊断,对相关疾病的辅助诊断有明显临床意义。

    一种基于Radon域特征表示的青光眼检测方法

    公开(公告)号:CN110378864B

    公开(公告)日:2021-07-16

    申请号:CN201810316983.8

    申请日:2018-04-10

    Abstract: 本发明公开了一种基于Radon域特征表示的青光眼检测方法,包括如下步骤:步骤1:将彩色眼底图转换为灰度图像,并进行灰度图像预处理;步骤2:在n个投影角度下采用Radon变换将预处理后的灰度图像投影到Radon域得到一维离散信号;步骤3:对一维离散信号进行维度统一,并采用双正交小波分解一维离散信号来提取到近似系数和细节系数;步骤4:将每组一维离散信号的近似系数和细节系数组合成样本的特征输入分类检测模型得到青光眼检测结果;分类检测模型训练时的输入参数为青光眼眼底图像样本和正常眼底图像样本构成特征向量矩阵N以及特征向量矩阵N中每行的样本标签向量。本发明通过上述方法可以精确检测出是否为青光眼。

    一种基于Radon域特征表示的青光眼检测方法

    公开(公告)号:CN110378864A

    公开(公告)日:2019-10-25

    申请号:CN201810316983.8

    申请日:2018-04-10

    Abstract: 本发明公开了一种基于Radon域特征表示的青光眼检测方法,包括如下步骤:步骤1:将彩色眼底图转换为灰度图像,并进行灰度图像预处理;步骤2:在n个投影角度下采用Radon变换将预处理后的灰度图像投影到Radon域得到一维离散信号;步骤3:对一维离散信号进行维度统一,并采用双正交小波分解一维离散信号来提取到近似系数和细节系数;步骤4:将每组一维离散信号的近似系数和细节系数组合成样本的特征输入分类检测模型得到青光眼检测结果;分类检测模型训练时的输入参数为青光眼眼底图像样本和正常眼底图像样本构成特征向量矩阵N以及特征向量矩阵N中每行的样本标签向量。本发明通过上述方法可以精确检测出是否为青光眼。

Patent Agency Ranking