-
公开(公告)号:CN116946162B
公开(公告)日:2023-12-15
申请号:CN202311209606.1
申请日:2023-09-19
Applicant: 东南大学
IPC: B60W50/00 , B60W40/064 , B60W40/072 , B60W40/076 , B60W40/06
Abstract: 本发明公开了一种考虑路面附着条件的智能网联商用车安全驾驶决策方法。首先,将安全驾驶决策问题建模为有限马尔可夫决策模型,并定义决策模型的基本参数。其次,设计决策模型的网络架构。最后,训练决策模型的网络参数。本发明提出的方法综合考虑了路面附着条件、道路坡度和弯度等因素对于行车安全的影响,能够适应不同的交通环境和行驶工况,解决了现有的商
-
公开(公告)号:CN116959260B
公开(公告)日:2023-12-05
申请号:CN202311212627.9
申请日:2023-09-20
Applicant: 东南大学
IPC: G08G1/01 , G08G1/048 , G08G1/052 , G08G1/0967 , G06N3/042 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于图神经网络的多车辆驾驶行为预测方法,属于新一代信息技术领域。首先,建立基于图神经网络的驾驶行为预测模型,并定义预测模型的输入和输出。其次,定义驾驶行为预测模型的相关参数。最后,设计驾驶行为预测模型的网络架构,并对其进行训练。本发明提出的方法站在路侧的全局化视角,能够预测多个交通参与者的驾驶行为,有助于提高道路重点区域的行车安全。此外,该方法无需计算车辆动力学模型,计算耗时低,且使用的传感器成(56)对比文件Yafu Tian 等.RSG-GCN: PredictingSemantic Relationships in Urban TrafficScene With Map Geometric Prior.IEEE OpenJournal of Intelligent TransportationSystems.2023,全文.赵海涛;程慧玲;丁仪;张晖;朱洪波.基于深度学习的车联边缘网络交通事故风险预测算法研究.电子与信息学报.2020,(第01期),全文.兰浩然 等.遮挡环境下基于路侧异源雷达融合的多交通目标鲁棒跟踪方法.仪器仪表学报.2022,全文.郑智勇.复杂交通环境下智能车辆高可靠车道级融合定位方法研究.万方学位论文.2023,全文.曹健 等.基于图神经网络的行人轨迹预测研究综述.计算机工程与科学.2023,全文.于秋爽.基于多模型输入的车辆轨迹预测研究.中国优秀硕士学位论文全文数据库 工程科技II辑.2022,全文.Chen T 等.Visual Reasoning usingGraph Convolutional Networks forPredicting Pedestrian CrossingIntention.2021 IEEE/CVF InternationalConference on Computer Vision Workshops(ICCVW).2022,全文.
-
公开(公告)号:CN116959260A
公开(公告)日:2023-10-27
申请号:CN202311212627.9
申请日:2023-09-20
Applicant: 东南大学
IPC: G08G1/01 , G08G1/048 , G08G1/052 , G08G1/0967 , G06N3/042 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于图神经网络的多车辆驾驶行为预测方法,属于新一代信息技术领域。首先,建立基于图神经网络的驾驶行为预测模型,并定义预测模型的输入和输出。其次,定义驾驶行为预测模型的相关参数。最后,设计驾驶行为预测模型的网络架构,并对其进行训练。本发明提出的方法站在路侧的全局化视角,能够预测多个交通参与者的驾驶行为,有助于提高道路重点区域的行车安全。此外,该方法无需计算车辆动力学模型,计算耗时低,且使用的传感器成本较低,计算方法清晰,便于大规模推广。
-
公开(公告)号:CN116946162A
公开(公告)日:2023-10-27
申请号:CN202311209606.1
申请日:2023-09-19
Applicant: 东南大学
IPC: B60W50/00 , B60W40/064 , B60W40/072 , B60W40/076 , B60W40/06
Abstract: 本发明公开了一种考虑路面附着条件的智能网联商用车安全驾驶决策方法。首先,将安全驾驶决策问题建模为有限马尔可夫决策模型,并定义决策模型的基本参数。其次,设计决策模型的网络架构。最后,训练决策模型的网络参数。本发明提出的方法综合考虑了路面附着条件、道路坡度和弯度等因素对于行车安全的影响,能够适应不同的交通环境和行驶工况,解决了现有的商用车驾驶决策方法适应性差、决策不准确的问题。
-
-
-