-
公开(公告)号:CN110428427B
公开(公告)日:2023-05-12
申请号:CN201910639378.9
申请日:2019-07-16
Applicant: 东南大学
Abstract: 本发明公开了一种基于密集偏置网络和自编码器的半监督肾动脉分割方法,包括:对现有的腹部CT血管造影图像,分割出图像中的肾脏区域得到感兴趣区域图像并进行标注得到肾动脉的真实掩模,并形成监督训练数据集和无监督训练数据集;将无监督训练数据集输入三维卷积去噪自编码器中进行图像重建训练,得到训练好的去噪自编码器模型;将监督训练数据集输入去噪自编码器模型,获得每张图像的先验解剖特征并同对应图像输入构建的密集偏置网络中进行分割训练,得到分割模型;对于新的待分割腹部CT血管造影图像,输入去噪自编码器模型得到图像的先验解剖特征,输入分割模型得到分割结果。本发明能获得高准确率的输出结果,快速实现肾动脉分割。
-
公开(公告)号:CN110428427A
公开(公告)日:2019-11-08
申请号:CN201910639378.9
申请日:2019-07-16
Applicant: 东南大学
Abstract: 本发明公开了一种基于密集偏置网络和自编码器的半监督肾动脉分割方法,包括:对现有的腹部CT血管造影图像,分割出图像中的肾脏区域得到感兴趣区域图像并进行标注得到肾动脉的真实掩模,并形成监督训练数据集和无监督训练数据集;将无监督训练数据集输入三维卷积去噪自编码器中进行图像重建训练,得到训练好的去噪自编码器模型;将监督训练数据集输入去噪自编码器模型,获得每张图像的先验解剖特征并同对应图像输入构建的密集偏置网络中进行分割训练,得到分割模型;对于新的待分割腹部CT血管造影图像,输入去噪自编码器模型得到图像的先验解剖特征,输入分割模型得到分割结果。本发明能获得高准确率的输出结果,快速实现肾动脉分割。
-