一种面向实时新闻内容的流式话题演化跟踪方法

    公开(公告)号:CN108509517B

    公开(公告)日:2021-05-11

    申请号:CN201810195967.8

    申请日:2018-03-09

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向实时新闻内容的流式话题演化跟踪方法,首先把实时采集的新闻内容,按时间段进行分批,对每一批新闻内容采用LDA方法挖掘初步话题结果;接着,在这一批新闻内容内部进行命名实体识别,并计算话题与实体间关联,以此更新实体库中的实体链接关系;然后,通过话题内部词项聚类,得到话题‑话题内类簇对应关系,并将话题结果存入话题库;最后,计算话题及其内部类簇的热度信息,并根据热度信息对LDA话题挖掘参数进行动态更新,供下一批新闻内容的话题演化跟踪使用。本发明可挖掘实时新闻内容中的话题特征以及话题内词项的类簇特征,充分利用话题间以及话题内不同类簇间的差异性,对LDA话题挖掘参数进行动态更新。

    一种面向电商评论文本的Aspect级情感分析方法

    公开(公告)号:CN109101478A

    公开(公告)日:2018-12-28

    申请号:CN201810564582.4

    申请日:2018-06-04

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向电商评论文本的Aspect级情感分析方法。首先,对电商评论文本进行预处理,并按照其所属的商品、商家、品牌进行分批;接着,在一批电商评论文本内部,综合考虑词性、句法及共现性特征,对候选评价对象的重要性进行排序,抽取电商评论文本中的评价对象;然后,利用动态滑动窗口机制将词项间共现限定在评论段级,并基于LDA模型对这一批电商评论文本中的评价对象进行聚类,得到评论Aspect-评价对象间对应关系;最后,基于构建的情感词典、否定词典,对电商评论文本进行情感分析。本发明不仅可以挖掘电商评论文本中的评价对象,给出细粒度的评价对象级情感分析结果;还能充分利用具体商品、商家、品牌范围内评价对象间的主题相关性,对评价对象进行聚类,进而得到评论Aspect级情感分析结果。

    一种面向电商评论文本的Aspect级情感分析方法

    公开(公告)号:CN109101478B

    公开(公告)日:2022-04-08

    申请号:CN201810564582.4

    申请日:2018-06-04

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向电商评论文本的Aspect级情感分析方法。首先,对电商评论文本进行预处理,并按照其所属的商品、商家、品牌进行分批;接着,在一批电商评论文本内部,综合考虑词性、句法及共现性特征,对候选评价对象的重要性进行排序,抽取电商评论文本中的评价对象;然后,利用动态滑动窗口机制将词项间共现限定在评论段级,并基于LDA模型对这一批电商评论文本中的评价对象进行聚类,得到评论Aspect‑评价对象间对应关系;最后,基于构建的情感词典、否定词典,对电商评论文本进行情感分析。本发明不仅可以挖掘电商评论文本中的评价对象,给出细粒度的评价对象级情感分析结果;还能充分利用具体商品、商家、品牌范围内评价对象间的主题相关性,对评价对象进行聚类,进而得到评论Aspect级情感分析结果。

    一种面向实时新闻内容的流式话题演化跟踪方法

    公开(公告)号:CN108509517A

    公开(公告)日:2018-09-07

    申请号:CN201810195967.8

    申请日:2018-03-09

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向实时新闻内容的流式话题演化跟踪方法,首先把实时采集的新闻内容,按时间段进行分批,对每一批新闻内容采用LDA方法挖掘初步话题结果;接着,在这一批新闻内容内部进行命名实体识别,并计算话题与实体间关联,以此更新实体库中的实体链接关系;然后,通过话题内部词项聚类,得到话题-话题内类簇对应关系,并将话题结果存入话题库;最后,计算话题及其内部类簇的热度信息,并根据热度信息对LDA话题挖掘参数进行动态更新,供下一批新闻内容的话题演化跟踪使用。本发明可挖掘实时新闻内容中的话题特征以及话题内词项的类簇特征,充分利用话题间以及话题内不同类簇间的差异性,对LDA话题挖掘参数进行动态更新。

Patent Agency Ranking