一种基于深度学习的视频目标检测方法与装置

    公开(公告)号:CN111832393A

    公开(公告)日:2020-10-27

    申请号:CN202010471931.5

    申请日:2020-05-29

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于深度学习的视频目标检测方法与装置。本发明在提取帧图像特征后,利用改进的SeqtoSeq模型提取视频中的时序信息,并利用该信息提高帧图像的特征质量,在一定程度上解决目标运动模糊、视频散焦、目标姿态奇异以及遮挡等帧图像恶化现象导致的检测精度降低问题。然后,对视频中的目标关系进行建模,从目标视觉特征、位置特征和时序特征三方面挖掘视频中目标之间潜在语义关系,并通过目标关系对候选框特征进行重新编码,以此丰富候选框的特征表示。本发明不仅能够提高视频目标检测的检测精度,同时还具有优良的鲁棒性。

Patent Agency Ranking