-
公开(公告)号:CN111915081A
公开(公告)日:2020-11-10
申请号:CN202010766761.3
申请日:2020-08-03
Applicant: 东北大学秦皇岛分校
Abstract: 本发明提供一种基于深度学习的峰值敏感型出行需求预测方法,涉及出行需求预测技术领域。首先获取某城市一段时间内的出租车出行记录数据,并对数据进行预处理,得到具有时空特征的出行需求数据集;再选取卷积神经网络和时间卷积神经网络作为基础模块,设计出行需求预测的深度学习网络模型;将卷积神经网络和时间卷积神经网络融合,得到多个时空特征提取层,提取出行需求数据的时空特征;将多个时空特征提取层最终输出的时空特征输入全连接层,得到深度学习网络模型的出行需求预测结果;设计峰值敏感型损失函数,利用训练集中的出行需求数据和SGD算法进行模型训练及优化;进而实现对该城市未来某一段的出行需求进行预测。
-
公开(公告)号:CN112950924A
公开(公告)日:2021-06-11
申请号:CN201911255806.4
申请日:2019-12-10
Applicant: 东北大学秦皇岛分校
Abstract: 本发明提供一种基于深度学习的复杂交通路网交通速度预测方法,其通过获取PeMS数据集,制作交通速度数据集和传感器网络的邻接矩阵数据,利用多个时空特征提取层堆叠捕捉高阶邻居节点之间的时空特征,局部注意力层提取当前时刻交通速度的具有空间关系的变化趋势特征,采集多个时空提取层产生的特征和局部注意力层产生的特征进行融合输入到全连接神经网络进行未来的交通速度预测,设计损失函数,并利用Adam算法进行优化;本发明的技术方案解决了现有的交通速度预测方案由于空间特征提取不佳所导致的预测精度低,误差波动较大以及深度学习网络训练耗时等问题。
-
公开(公告)号:CN111915081B
公开(公告)日:2023-10-17
申请号:CN202010766761.3
申请日:2020-08-03
Applicant: 东北大学秦皇岛分校
IPC: G06Q10/04 , G06Q10/0631 , G06N3/0464 , G06Q50/26 , G06N3/08
Abstract: 本发明提供一种基于深度学习的峰值敏感型出行需求预测方法,涉及出行需求预测技术领域。首先获取某城市一段时间内的出租车出行记录数据,并对数据进行预处理,得到具有时空特征的出行需求数据集;再选取卷积神经网络和时间卷积神经网络作为基础模块,设计出行需求预测的深度学习网络模型;将卷积神经网络和时间卷积神经网络融合,得到多个时空特征提取层,提取出行需求数据的时空特征;将多个时空特征提取层最终输出的时空特征输入全连接层,得到深度学习网络模型的出行需求预测结果;设计峰值敏感型损失函数,利用训练集中的出行需求数据和SGD算法进行模型训练及优化;进而实现对该城市未来某一段的出行需求进行预测。
-
公开(公告)号:CN112950924B
公开(公告)日:2022-08-19
申请号:CN201911255806.4
申请日:2019-12-10
Applicant: 东北大学秦皇岛分校
Abstract: 本发明提供一种基于深度学习的复杂交通路网交通速度预测方法,其通过获取PeMS数据集,制作交通速度数据集和传感器网络的邻接矩阵数据,利用多个时空特征提取层堆叠捕捉高阶邻居节点之间的时空特征,局部注意力层提取当前时刻交通速度的具有空间关系的变化趋势特征,采集多个时空提取层产生的特征和局部注意力层产生的特征进行融合输入到全连接神经网络进行未来的交通速度预测,设计损失函数,并利用Adam算法进行优化;本发明的技术方案解决了现有的交通速度预测方案由于空间特征提取不佳所导致的预测精度低,误差波动较大以及深度学习网络训练耗时等问题。
-
-
-