-
公开(公告)号:CN112507610B
公开(公告)日:2023-09-26
申请号:CN202011311991.7
申请日:2020-11-20
Applicant: 东北大学
IPC: G06F30/27 , B21B37/74 , G06F119/08
Abstract: 本发明提供一种热轧卷取温度的区间预测方法,包括以下步骤:根据轧件原始数据以及精轧出口的实测样本数据可知输入数据和输出数据;对数据进行预处理;对人工神经网络进行设置;通过鲸鱼优化算法优化所述人工神经网络,进而通过最小化代价函数进行寻优,获取人工神经网络最优的权重和偏置量;根据所述输入得到实测卷取温度与目标卷取温度的相对偏差的预测上限和预测下限,可同时进行点预测与区间预测;根据所提出的评价指标NCWC进行区间预测性能分析。本发明在卷取温度预测领域,相比于采用传统数学模型进行点预测,所述发明实现了热轧卷取温度的区间预测。并通过改变人工神经网络结构,对比单层ANN、双层ANN与三层ANN,发现采用三层人工神经网络进行预测能够显著提高模型预测精度。
-
公开(公告)号:CN112507610A
公开(公告)日:2021-03-16
申请号:CN202011311991.7
申请日:2020-11-20
Applicant: 东北大学
IPC: G06F30/27 , B21B37/74 , G06F119/08
Abstract: 本发明提供一种热轧卷取温度的区间预测方法,包括以下步骤:根据轧件原始数据以及精轧出口的实测样本数据可知输入数据和输出数据;对数据进行预处理;对人工神经网络进行设置;通过鲸鱼优化算法优化所述人工神经网络,进而通过最小化代价函数进行寻优,获取人工神经网络最优的权重和偏置量;根据所述输入得到实测卷取温度与目标卷取温度的相对偏差的预测上限和预测下限,可同时进行点预测与区间预测;根据所提出的评价指标NCWC进行区间预测性能分析。本发明在卷取温度预测领域,相比于采用传统数学模型进行点预测,所述发明实现了热轧卷取温度的区间预测。并通过改变人工神经网络结构,对比单层ANN、双层ANN与三层ANN,发现采用三层人工神经网络进行预测能够显著提高模型预测精度。
-