-
公开(公告)号:CN110221909B
公开(公告)日:2023-01-17
申请号:CN201910510535.6
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务推测执行方法,包括:资源管理器对备份任务数自适应调整,得到最大备份任务数;预测执行任务完成时间;将最大备份任务数与APPmaster设置的备份任务数比较,取最小值作为备份任务数阈值;判断备份任务数是否小于等于备份任务数阈值;判断任务数是否小于总任务数;预测备份任务完成时间;判断备份任务完成时间和执行任务完成时间大小,确定是否开启备份;本发明保证了当集群计算资源紧张的情况下,备份任务的开启不会对其他作业产生影响;执行任务的完成时间预测算法,有效避免了迟滞任务的误判导致计算资源浪费;备份任务完成时间预测算法,节约计算节点的计算资源,减少作业的完成时间,提高了集群的整体性能。
-
公开(公告)号:CN110149237B
公开(公告)日:2021-06-22
申请号:CN201910510953.5
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种Hadoop平台计算节点负载预测方法,包括:基于滑动窗口二次检测算法的数据预处理方法;基于ARIMA算法的节点负载线性预测方法;基于RNN算法的节点负载非线性残差预测方法;将ARIMA算法与RNN算法预测出来的结果进行线性相加作为最终的预测结果;本发明通过对各个结算节点历史数据的分析,可以提取有价值的信息,进而合理预测下一时间段内的计算节点的负载,精确预测计算节点的负载可以为资源管理器合理地给AppMaster分配资源提供依据,进而缓解高负载节点的压力,提升低负载节点的计算资源利用率,提高Hadoop集群的可靠性和性能。本发明通过ARIMA和RNN模型组合,更加精确的对负载进行预测。
-
公开(公告)号:CN110262897A
公开(公告)日:2019-09-20
申请号:CN201910510964.3
申请日:2019-06-13
Applicant: 东北大学
IPC: G06F9/50
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务初始分配方法,包括:使用延迟调度策略的AppMaster选择方法,开启AppMaster;基于BP神经网络的节点,计算资源分配数量;使用DRF算法的用户队列和用户作业选择方法,开启子任务;本发明基于延迟调度策略的AppMaster选择算法,提高了AppMaster运行时的稳定性,保证了作业的正常运行。基于BP神经网络的节点计算资源分配算法,减少高负载标签计算节点分配的任务量,增加低负载标签计算节点分配的任务量,提高了集群整体的稳定性和性能。基于DRF的用户队列和用户作业选择算法,当作业所属的队列资源不够时,根据占主导地位的计算资源使用情况来选择叶子队列和用户作业,最终达到合理化计算任务初始分配,均衡集群负载,提高集群性能的目标。
-
公开(公告)号:CN110221909A
公开(公告)日:2019-09-10
申请号:CN201910510535.6
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务推测执行方法,包括:资源管理器对备份任务数自适应调整,得到最大备份任务数;预测执行任务完成时间;将最大备份任务数与APPmaster设置的备份任务数比较,取最小值作为备份任务数阈值;判断备份任务数是否小于等于备份任务数阈值;判断任务数是否小于总任务数;预测备份任务完成时间;判断备份任务完成时间和执行任务完成时间大小,确定是否开启备份;本发明保证了当集群计算资源紧张的情况下,备份任务的开启不会对其他作业产生影响;执行任务的完成时间预测算法,有效避免了迟滞任务的误判导致计算资源浪费;备份任务完成时间预测算法,节约计算节点的计算资源,减少作业的完成时间,提高了集群的整体性能。
-
公开(公告)号:CN110149237A
公开(公告)日:2019-08-20
申请号:CN201910510953.5
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种Hadoop平台计算节点负载预测方法,包括:基于滑动窗口二次检测算法的数据预处理方法;基于ARIMA算法的节点负载线性预测方法;基于RNN算法的节点负载非线性残差预测方法;将ARIMA算法与RNN算法预测出来的结果进行线性相加作为最终的预测结果;本发明通过对各个结算节点历史数据的分析,可以提取有价值的信息,进而合理预测下一时间段内的计算节点的负载,精确预测计算节点的负载可以为资源管理器合理地给AppMaster分配资源提供依据,进而缓解高负载节点的压力,提升低负载节点的计算资源利用率,提高Hadoop集群的可靠性和性能。本发明通过ARIMA和RNN模型组合,更加精确的对负载进行预测。
-
公开(公告)号:CN110262897B
公开(公告)日:2023-01-31
申请号:CN201910510964.3
申请日:2019-06-13
Applicant: 东北大学
IPC: G06F9/50
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务初始分配方法,包括:使用延迟调度策略的AppMaster选择方法,开启AppMaster;基于BP神经网络的节点,计算资源分配数量;使用DRF算法的用户队列和用户作业选择方法,开启子任务;本发明基于延迟调度策略的AppMaster选择算法,提高了AppMaster运行时的稳定性,保证了作业的正常运行。基于BP神经网络的节点计算资源分配算法,减少高负载标签计算节点分配的任务量,增加低负载标签计算节点分配的任务量,提高了集群整体的稳定性和性能。基于DRF的用户队列和用户作业选择算法,当作业所属的队列资源不够时,根据占主导地位的计算资源使用情况来选择叶子队列和用户作业,最终达到合理化计算任务初始分配,均衡集群负载,提高集群性能的目标。
-
-
-
-
-