基于深度学习驱动的超声成像信息计算机处理系统

    公开(公告)号:CN110555827A

    公开(公告)日:2019-12-10

    申请号:CN201910721584.4

    申请日:2019-08-06

    Abstract: 本发明涉及一种基于深度学习驱动的超声成像信息计算机处理系统,包括:高频超声图像获取模块;组织器官膜状结构信息定位模块;patch小块获取模块,采用滑动窗口自动获取小块区域范围,筛选掉成像质量低于设定阈值的patch小块,将其余patch小块用于深度学习网络的训练和测试;网络训练模块,用于根据组织器官膜状结构和实质结构区域的不同图像特点,分别选择符合两种区域图像特点的深度学习网络模型进行训练以及后续特征的提取;两级分类模块,用于利用组织器官膜状结构模型A和实质模型B对patch小块获取模块输出的patch小块进行分类结果处理,经投票方法得到整体高频超声图像的分类结果。本发明应用到肝硬化的分期诊断中达到了较高的准确率和灵敏度。

    基于深度学习驱动的超声成像信息计算机处理系统

    公开(公告)号:CN110555827B

    公开(公告)日:2022-03-29

    申请号:CN201910721584.4

    申请日:2019-08-06

    Abstract: 本发明涉及一种基于深度学习驱动的超声成像信息计算机处理系统,包括:高频超声图像获取模块;组织器官膜状结构信息定位模块;patch小块获取模块,采用滑动窗口自动获取小块区域范围,筛选掉成像质量低于设定阈值的patch小块,将其余patch小块用于深度学习网络的训练和测试;网络训练模块,用于根据组织器官膜状结构和实质结构区域的不同图像特点,分别选择符合两种区域图像特点的深度学习网络模型进行训练以及后续特征的提取;两级分类模块,用于利用组织器官膜状结构模型A和实质模型B对patch小块获取模块输出的patch小块进行分类结果处理,经投票方法得到整体高频超声图像的分类结果。本发明应用到肝硬化的分期诊断中达到了较高的准确率和灵敏度。

Patent Agency Ranking