-
公开(公告)号:CN114114911A
公开(公告)日:2022-03-01
申请号:CN202111339236.4
申请日:2021-11-12
Applicant: 上海交通大学
Abstract: 本发明公开了一种基于模型强化学习的自动超参数调节方法,涉及强化学习方法领域。本发明提出将超参数的调节过程建模为一个新的马尔科夫决策过程,再使用强化学习的方法训练一个超参数控制器。该超参数控制器可以根据当前训练阶段的各种状态,比如模型误差,策略回报奖励等等来自动选择动作以调节相应的超参数。通过超参数控制器调节的基于模型算法的性能远远超过了原始基于模型算法的性能,且可以省去调节超参数所花费的人工成本,可以被运用于自动控制等领域。
-
公开(公告)号:CN112297012A
公开(公告)日:2021-02-02
申请号:CN202011191173.8
申请日:2020-10-30
Applicant: 上海交通大学
Abstract: 本发明提出了一种基于自适应模型的机器人强化学习方法,在正常学习一个环境模型的同时,加入模型自适应的步骤,从而可以达到提升虚拟数据准确性的效果。具体来说,当模型是一个神经网络结构,模型自适应通过减小真实数据和虚拟数据在网络隐藏层的特征分布,从而来提升模型在虚拟数据上的准确性。实验证明,在机器人控制等领域,我们的方法相比于之前的基于模型的强化学习方法有着更高的采样效率以及最终性能。
-
公开(公告)号:CN111950735A
公开(公告)日:2020-11-17
申请号:CN202010622636.5
申请日:2020-06-30
Applicant: 上海交通大学
Abstract: 一种基于双向模型的强化学习方法,用于机器人控制,其特征在于,包括:正向模型、反向模型、正向策略、反向策略,从某真实的状态开始,双向地生成轨迹,在三个阶段不断进行迭代:数据搜集阶段、模型学习阶段、策略优化阶段,直到算法收敛。本发明的有益效果是:双向模型相比于传统正向模型,在生成相同长度的虚拟轨迹的情况下的模型累积误差更小,且在进一步的仿真控制实验中,本发明的方法相比于之前的基于模型方法,无论采样效率还是渐进性能都更加优秀。
-
公开(公告)号:CN112183288B
公开(公告)日:2022-10-21
申请号:CN202011002376.8
申请日:2020-09-22
Applicant: 上海交通大学
Abstract: 本发明公开了一种基于模型的多智能体强化学习方法,属于多智能体强化学习领域,包括对多智能体环境和策略建模,生成多智能体的虚拟轨迹,利用虚拟轨迹更新多智能体的策略。本发明中各智能体分布式进行决策,分别对多智能体环境与对手智能体策略建模,并利用习得的模型生成虚拟轨迹,能够有效提高多智能体强化学习的采样效率,同时减少智能体交互次数降低设备损坏风险,提高了将分布式多智能体强化学习方法部署在多智能体任务的可行性。
-
公开(公告)号:CN114114911B
公开(公告)日:2024-04-30
申请号:CN202111339236.4
申请日:2021-11-12
Applicant: 上海交通大学
Abstract: 本发明公开了一种基于模型强化学习的自动超参数调节方法,涉及强化学习方法领域。本发明提出将超参数的调节过程建模为一个新的马尔科夫决策过程,再使用强化学习的方法训练一个超参数控制器。该超参数控制器可以根据当前训练阶段的各种状态,比如模型误差,策略回报奖励等等来自动选择动作以调节相应的超参数。通过超参数控制器调节的基于模型算法的性能远远超过了原始基于模型算法的性能,且可以省去调节超参数所花费的人工成本,可以被运用于自动控制等领域。
-
公开(公告)号:CN112297012B
公开(公告)日:2022-05-31
申请号:CN202011191173.8
申请日:2020-10-30
Applicant: 上海交通大学
Abstract: 本发明提出了一种基于自适应模型的机器人强化学习方法,在正常学习一个环境模型的同时,加入模型自适应的步骤,从而可以达到提升虚拟数据准确性的效果。具体来说,当模型是一个神经网络结构,模型自适应通过减小真实数据和虚拟数据在网络隐藏层的特征分布,从而来提升模型在虚拟数据上的准确性。实验证明,在机器人控制等领域,我们的方法相比于之前的基于模型的强化学习方法有着更高的采样效率以及最终性能。
-
公开(公告)号:CN111950735B
公开(公告)日:2023-11-17
申请号:CN202010622636.5
申请日:2020-06-30
Applicant: 上海交通大学
Abstract: 一种基于双向模型的强化学习方法,用于机器人控制,其特征在于,包括:正向模型、反向模型、正向策略、反向策略,从某真实的状态开始,双向地生成轨迹,在三个阶段不断进行迭代:数据搜集阶段、模型学习阶段、策略优化阶段,直到算法收敛。本发明的有益效果是:双向模型相比于传统正向模型,在生成相同长度的虚拟轨迹的情况下的模型累积误差更小,且在进一步的仿真控制实验中,本发明的方法相比于之前的基于模型方法,无论采样效率还是渐进性能都更加优秀。
-
公开(公告)号:CN112183288A
公开(公告)日:2021-01-05
申请号:CN202011002376.8
申请日:2020-09-22
Applicant: 上海交通大学
Abstract: 本发明公开了一种基于模型的多智能体强化学习方法,属于多智能体强化学习领域,包括对多智能体环境和策略建模,生成多智能体的虚拟轨迹,利用虚拟轨迹更新多智能体的策略。本发明中各智能体分布式进行决策,分别对多智能体环境与对手智能体策略建模,并利用习得的模型生成虚拟轨迹,能够有效提高多智能体强化学习的采样效率,同时减少智能体交互次数降低设备损坏风险,提高了将分布式多智能体强化学习方法部署在多智能体任务的可行性。
-
-
-
-
-
-
-