Metric for automatic assessment of conversational responses
Abstract:
Examples are generally directed towards automatic assessment of machine generated conversational responses. Context-message-response n-tuples are extracted from at least one source of conversational data to generate a set of multi-reference responses. A response in the set of multi-reference responses includes it context-message data pair and rating. The rating indicates a quality of the response relative to the context-message data pair. A response assessment engine generates a metric score for a machine-generated response based on an assessment metric and the set of multi-reference responses. The metric score indicates a quality of the machine-generated conversational response relative to a user-generated message and a context of the user-generated message. A response generation system of a computing device, such as a digital assistant, is optimized and adjusted based on the metric score to improve the accuracy, quality, and relevance of responses output to the user.
Public/Granted literature
Information query
Patent Agency Ranking
0/0