Forecasting and classifying cyber-attacks using neural embeddings
Abstract:
A first collection including a first feature vector and a Q&A feature vector is constructed. A second collection is constructed from the first collection by inserting noise in at least one of the vectors. A third collection is constructed by crossing over at least one the vectors of the second collection with a corresponding vector of a fourth collection, migrating at least one of the vectors of the second collection with a corresponding vector of a fifth collection, or both. Using a forecasting configuration, a vector of the third collection is aged to generate a changed feature vector, the changed feature vector containing feature values expected at a future time. The changed feature vector is input into a trained neural network to predict a probability of the cyber-attack occurring at the future time.
Public/Granted literature
Information query
Patent Agency Ranking
0/0