Low-rank hidden input layer for speech recognition neural network
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a deep neural network. One of the methods for training a deep neural network that includes a low rank hidden input layer and an adjoining hidden layer, the low rank hidden input layer including a first matrix A and a second matrix B with dimensions i×m and m×o, respectively, to identify a keyword includes receiving a feature vector including i values that represent features of an audio signal encoding an utterance, determining, using the low rank hidden input layer, an output vector including o values using the feature vector, determining, using the adjoining hidden layer, another vector using the output vector, determining a confidence score that indicates whether the utterance includes the keyword using the other vector, and adjusting weights for the low rank hidden input layer using the confidence score.
Public/Granted literature
Information query
Patent Agency Ranking
0/0