Systems and methods for an accelerated and enhanced tuning of a model based on prior model tuning data
Abstract:
Systems and methods for an accelerated tuning of hyperparameters of a model supported with prior learnings data include assessing subject models associated with a plurality of distinct sources of transfer tuning data, wherein the assessing includes implementing of: [1] a model relatedness assessment for each of a plurality of distinct pairwise subject models, and [2] a model coherence assessment for each of the plurality of distinct pairwise subject models; constructing a plurality of distinct prior mixture models based on the relatedness metric value and the coherence metric value for each of the plurality of distinct pairwise subject models, identifying sources of transfer tuning data based on identifying a distinct prior mixture model having a satisfactory model evidence fraction; and accelerating a tuning of hyperparameters of the target model based on transfer tuning data associated with the distinct prior mixture model having the satisfactory model evidence fraction.
Information query
Patent Agency Ranking
0/0