Voice identity feature extractor and classifier training
Abstract:
A voice identity feature extractor training method includes extracting a voice feature vector of training voice. The method may include determining a corresponding I-vector according to the voice feature vector of the training voice. The method may include adjusting a weight of a neural network model by using the I-vector as a first target output of the neural network model, to obtain a first neural network model. The method may include obtaining a voice feature vector of target detecting voice and determining an output result of the first neural network model for the voice feature vector of the target detecting voice. The method may include determining an I-vector latent variable. The method may include estimating a posterior mean of the I-vector latent variable, and adjusting a weight of the first neural network model using the posterior mean as a second target output, to obtain a voice identity feature extractor.
Public/Granted literature
Information query
Patent Agency Ranking
0/0