Method and system for detecting intrusion in parallel based on unbalanced data Deep Belief Network
Abstract:
The disclosure discloses a method for detecting an intrusion in parallel based on an unbalanced data Deep Belief Network, which reads an unbalanced data set DS; under-samples the unbalanced data set using the improved NCR algorithm to reduce the ratio of the majority type samples and make the data distribution of the data set balanced; the improved differential evolution algorithm is used on the distributed memory computing platform Spark to optimize the parameters of the deep belief network model to obtain the optimal model parameters; extract the feature of data of the data set, and then classify the intrusion detection by the weighted nuclear extreme learning machine, and finally train multiple weighted nuclear extreme learning machines of different structures in parallel by multithreading as the base classifier, and establish a multi-classifier intrusion detection model based on adaptive weighted voting for detecting the intrusion in parallel.
Information query
Patent Agency Ranking
0/0