Short-term traffic speed prediction and forecasting using machine learning analysis of spatiotemporal traffic speed dependencies in probe and weather data
Abstract:
A framework for modeling traffic speed in a transportation network analyzes both the spatial and temporal dependencies in probe-based traffic speeds, historical weather data, and forecasted weather data, using multiple machine learning models. A decentralized partial least squares (PLS) regression model predicts short-term speed using localized, historical probe-based traffic data, and a deep learning model applies the predicted short-term speed to further estimate traffic speed at specified times and at specific locations in the transportation network for predicting traffic bottlenecks and other future traffic states.
Information query
Patent Agency Ranking
0/0