Systems and methods for using machine learning techniques to predict institutional risks
Abstract:
Systems and methods for entity risk management are disclosed. A system for entity risk management may include a memory storing instructions and at least one processor configured to execute instructions to perform operations including: establishing a connection between the system and a data source, the data source being remote from the system and associated with a first entity; receiving first document data from the data source; normalizing the first document data; classifying the normalized document data; extracting model input data from the classified document data; applying a machine learning model trained to predict risk levels using second document data to the extracted model input data to predict a risk level associated with the first entity; generating analysis data based on the predicted risk level; and based on the analysis data, transmitting an alert to a management device communicably connected to the system.
Information query
Patent Agency Ranking
0/0