Neural network image processing
Abstract:
A computer, including a processor and a memory, the memory including instructions to be executed by the processor to determine a second convolutional neural network (CNN) training dataset by determining an underrepresented object configuration and an underrepresented noise factor corresponding to an object in a first CNN training dataset, generate one or more simulated images including the object corresponding to the underrepresented object configuration in the first CNN training dataset by inputting ground truth data corresponding to the object into a photorealistic rendering engine and generate one or more synthetic images including the object corresponding to the underrepresented noise factor in the first CNN training dataset by processing the simulated images with a generative adversarial network (GAN) to determine a second CNN training dataset. The instructions can include further instructions to train a CNN to using the first and the second CNN training datasets.
Public/Granted literature
Information query
Patent Agency Ranking
0/0