Prediction method and system for multivariate time series data in manufacturing systems
Abstract:
The present disclosure describes a method of controlling a manufacturing system using multivariate time series, the method comprising: recording data from one or more devices in the manufacturing system; storing the recorded data in a data storage as a plurality of time series, wherein each time series has a first recorded value corresponding to a first time and a final recorded value corresponding to an end of the time series; interpolating, within a first time window, missing values in the plurality of time series using a Bayesian model, wherein the missing values fall between the first and end time of the respective time series; storing the interpolated values as prediction data in a prediction storage, wherein the interpolated values include the uncertainty of each interpolated value; loading the recorded data that fall within a second time window from the data storage; loading prediction data from the prediction storage that fall within the second time window and for which no recorded data are available; optimizing the parameters of the Bayesian model using the loaded recorded data and the prediction data; predicting, using the Bayesian model, values for each of the time series for which loaded recorded and prediction data are not available; storing the predicted values as prediction data in the prediction storage, wherein the prediction values include the uncertainty of each prediction value; and adjusting one or more of the devices that generate the recorded data based on the prediction data within the second time window.
Information query
Patent Agency Ranking
0/0