Prefetching and/or computing resource allocation based on predicting classification labels with temporal data
Abstract:
Methods, systems and computer program products are provided for prefetching information and/or (pre)allocating computing resources based on predicting classification labels with temporal data. A trained temporal classification model forecasts events (e.g., too numerous for individual modeling) by predicting classification labels indicating whether events will occur, or a number of occurrences of the events, during each of a plurality of future time intervals. Time-series datasets, indicating whether events occurred, or a number of occurrences of the events, during each of a plurality of past time intervals, are transformed into temporal classification datasets. Classifications may be based, at least in part, on extracted features, such as data seasonality, temporal representation, statistical and/or real-time features. Classification labels are used to determine whether to take one or more actions, such as, for example, prefetching information or (pre)allocating a computing resource.
Information query
Patent Agency Ranking
0/0