IoT-based network architecture for detecting faults using vibration measurement data
Abstract:
In one embodiment, a device in a network receives a machine learning encoder and decoder trained by a supervisory service. The service trains the encoder and decoder using vibration measurement data sent to the service by a plurality of devices. The device trains, based on the received encoder, a classifier to determine whether vibration measurement data is indicative of a behavioral anomaly. The device receives vibration measurement data captured by a particular set of one or more vibration sensors of a monitored system. The device evaluates, using the trained decoder, the received vibration measurement data to determine whether the data is indicative of a structural anomaly in the monitored system. The device evaluates, using the trained classifier, the received vibration measurement data to determine whether the data is indicative of a behavioral anomaly in the monitored system.
Information query
Patent Agency Ranking
0/0