Neural network based position estimation of target object of interest in video frames
Abstract:
Visual target tracking is task of locating a target in consecutive frame of a video. Conventional systems observe target behavior frames of the video. However, dealing with this problem is very challenging when video has illumination variations, occlusion, change in size and view of the object due to relative motion between camera and object. Embodiments of the present disclosure addresses this problem by implementing Neural Network (NN), its features and their corresponding gradients. Present disclosure explicitly guides the NN by feeding target object of interest (ToI) defined by a bounding box in the first frame of the video. With this guidance, NN generates target activation map via convolutional features map and their gradient maps, thus giving tentative location of the ToI to further exploit to locate target object precisely by using correlation filter(s) and peak location estimator, thus repeating process for every frame of video to track ToI accurately.
Information query
Patent Agency Ranking
0/0