Systems and methods for semi-supervised depth estimation according to an arbitrary camera
Abstract:
System, methods, and other embodiments described herein relate to semi-supervised training of a depth model using a neural camera model that is independent of a camera type. In one embodiment, a method includes acquiring training data including at least a pair of training images and depth data associated with the training images. The method includes training the depth model using the training data to generate a self-supervised loss from the pair of training images and a supervised loss from the depth data. Training the depth model includes learning the camera type by generating, using a ray surface model, a ray surface that approximates an image character of the training images as produced by a camera having the camera type. The method includes providing the depth model to infer depths from monocular images in a device.
Information query
Patent Agency Ranking
0/0