Method and apparatus for image processing using context-adaptive entropy model
Abstract:
Disclosed herein is a context-adaptive entropy model for end-to-end optimized image compression. The entropy model exploits two types of contexts. The two types of contexts are a bit-consuming context and a bit-free context, respectively, and these contexts are classified depending on the corresponding context requires the allocation of additional bits. Based on these contexts, the entropy model may more accurately estimate the distribution of each latent representation using a more generalized form of entropy models, thus improving compression performance.
Information query
Patent Agency Ranking
0/0