Pattern identification in time-series social media data, and output-dynamics engineering for a dynamic system having one or more multi-scale time-series data sets
Abstract:
In some aspects, computer-implemented methods of identifying patterns in time-series social-media data. In an embodiment, the method includes applying a deep-learning methodology to the time-series social-media data at a plurality of temporal resolutions to identify patterns that may exist at and across ones of the temporal resolutions. A particular deep-learning methodology that can be used is a recursive convolutional Bayesian model (RCBM) utilizing a special convolutional operator. In some aspects, computer-implemented methods of engineering outcome-dynamics of a dynamic system. In an embodiment, the method includes training a generative model using one or more sets of time-series data and solving an optimization problem composed of a likelihood function of the generative model and a score function reflecting a utility of the dynamic system. A result of the solution is an influence indicator corresponding to intervention dynamics that can be applied to the dynamic system to influence outcome dynamics of the system.
Information query
Patent Agency Ranking
0/0