Systems and methods for detecting unauthorized or suspicious financial activity
Abstract:
In a method for detecting unauthorized or suspicious financial activity, a graph convolutional network for financial crime prevention, a separate node is created for each entity: each account, each person, each address (e.g. email address), etc. Separate attributes are provided to aggregate transactions in which the node acts as a sender; transactions in which the node acts as a receiver; transactions using a specific channel (e.g. ATM); and transactions of a specific type (e.g. online money transfer). In some embodiments, the attributes exclude data on individual transactions to reduce the amount of data and hence provide more effective computer utilization. The approach is suitable for many applications, including anti-money laundering. Other features are also provided, as well as systems for such detection.
Information query
Patent Agency Ranking
0/0