Invention Grant
- Patent Title: Multi-iteration compression for deep neural networks
-
Application No.: US15390559Application Date: 2016-12-26
-
Publication No.: US10762426B2Publication Date: 2020-09-01
- Inventor: Xin Li , Song Han , Shijie Sun , Yi Shan
- Applicant: BEIJING DEEPHI INTELLIGENCE TECHNOLOGY Co., Ltd.
- Applicant Address: CN Beijing
- Assignee: BEIJING DEEPHI INTELLIGENT TECHNOLOGY CO., LTD.
- Current Assignee: BEIJING DEEPHI INTELLIGENT TECHNOLOGY CO., LTD.
- Current Assignee Address: CN Beijing
- Agency: IPro, PLLC
- Priority: com.zzzhc.datahub.patent.etl.us.BibliographicData$PriorityClaim@514e025c com.zzzhc.datahub.patent.etl.us.BibliographicData$PriorityClaim@2bbd2184 com.zzzhc.datahub.patent.etl.us.BibliographicData$PriorityClaim@187ec50 com.zzzhc.datahub.patent.etl.us.BibliographicData$PriorityClaim@61cf0238
- Main IPC: G06N3/08
- IPC: G06N3/08 ; G06N3/04 ; G10L15/16

Abstract:
A multi-iteration method for compressing a deep neural network into a sparse neural network without degrading the accuracy is disclosed herein. In an example, the method includes determining a respective initial compression ratio for each of a plurality of matrices characterizing the weights between the neurons of the neural network, compressing each of the plurality of matrices based on the respective initial compression ratio, so as to obtain a compressed neural network, and fine-tuning the compressed neural network.
Public/Granted literature
- US20180046919A1 MULTI-ITERATION COMPRESSION FOR DEEP NEURAL NETWORKS Public/Granted day:2018-02-15
Information query