Predicting attribute values for user segmentation by determining suggestive attribute values
Abstract:
This disclosure relates generally to performing user segmentation, and more particularly to predicting attribute values for user segmentation. In one embodiment, the method includes segregating a user with an incomplete attribute value and a user with complete attribute values for an attribute into a first group and a second group respectively, computing prior probability for each suggestive attribute value, identified for the incomplete attribute value, based on number of users in second group having the suggestive attribute value as attribute value for the attribute. Computing likelihood for each suggestive attribute value based on similarity of the attribute values of the user of the first group with users of the second group, computing a posterior probability for each suggestive attribute value based on the prior probability and the likelihood, selecting a suggestive attribute value with the highest posterior probability as the attribute value for the incomplete attribute value of the user.
Public/Granted literature
Information query
Patent Agency Ranking
0/0