Method and system for distributed coding and learning in neuromorphic networks for pattern recognition
Abstract:
Described is a system for pattern recognition designed for neuromorphic hardware. The system generates a spike train of neuron spikes for training patterns with each excitatory neuron in an excitatory layer, where each training pattern belongs to a pattern class. A spiking rate distribution of excitatory neurons is generated for each pattern class. Each spiking rate distribution of excitatory neurons is normalized, and a class template is generated for each pattern class from the normalized spiking rate distributions. An unlabeled input pattern is classified using the class templates. A mechanical component of an autonomous device can be controlled based on classification of the unlabeled input pattern.
Information query
Patent Agency Ranking
0/0