Recurrent neural networks for malware analysis
Abstract:
Using a recurrent neural network (RNN) that has been trained to a satisfactory level of performance, highly discriminative features can be extracted by running a sample through the RNN, and then extracting a final hidden state hh where i is the number of instructions of the sample. This resulting feature vector may then be concatenated with the other hand-engineered features, and a larger classifier may then be trained on hand-engineered as well as automatically determined features. Related apparatus, systems, techniques and articles are also described.
Public/Granted literature
Information query
Patent Agency Ranking
0/0