- Patent Title: Individual and cohort pharmacological phenotype prediction platform
-
Application No.: US16267546Application Date: 2019-02-05
-
Publication No.: US10553318B2Publication Date: 2020-02-04
- Inventor: Brian D. Athey , Ari Allyn-Feuer , Gerald A. Higgins , James S. Burns , Alexandr Kalinin , Brian Pauls , Alex Ade , Narathip Reamaroon
- Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
- Applicant Address: US MI Ann Arbor
- Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
- Current Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
- Current Assignee Address: US MI Ann Arbor
- Agency: Marshall, Gerstein & Borun LLP
- Main IPC: G16H50/20
- IPC: G16H50/20 ; G16H50/30 ; G16H10/60 ; A61K31/37 ; G06N3/08 ; G16H50/70 ; G16B30/00 ; G16B40/00 ; G16B20/00

Abstract:
For patients who exhibit or may exhibit primary or comorbid disease, pharmacological phenotypes may be predicted through the collection of panomic data over a period of time. A machine learning engine may generate a statistical model based on training data from training patients to predict pharmacological phenotypes, including drug response and dosing, drug adverse events, disease and comorbid disease risk, drug-gene, drug-drug, and polypharmacy interactions. Then the model may be applied to data for new patients to predict their pharmacological phenotypes, and enable decision making in clinical and research contexts, including drug selection and dosage, changes in drug regimens, polypharmacy optimization, monitoring, etc., to benefit from additional predictive power, resulting in adverse event and substance abuse avoidance, improved drug response, better patient outcomes, lower treatment costs, public health benefits, and increases in the effectiveness of research in pharmacology and other biomedical fields.
Public/Granted literature
- US20190172584A1 INDIVIDUAL AND COHORT PHARMACOLOGICAL PHENOTYPE PREDICTION PLATFORM Public/Granted day:2019-06-06
Information query