Perovskite catalysts enhanced combustion on porous media
Abstract:
The effects of different perovskite catalysts, catalytic active materials with a crystal structure of ABO3, on matrix stabilized combustion in a porous ceramic media are explored. Highly porous silicon carbide ceramics are used as a porous media for a catalytically enhanced matrix stabilized combustion of a lean mixture of methane and air. A stainless steel combustion chamber was designed incorporating a window for direct observation of the flame within the porous media. Perovskite catalytic enhancement of SiC porous matrix with La0.75Sr0.25Fe0.6Cr0.35Ru0.05O3; La0.75Sr0.25Fe0.6Cr0.4O3; La0.75Sr0.25Fe0.95Ru0.05O3; La0.75Sr0.25Cr0.95Ru0.05O3; and LaFe0.95Ru0.05O3, for example, were used to enhance combustion. The flammability limits of the combustion of methane and air were explored using both inert and catalytically enhanced surfaces of the porous ceramic media. By coating the SiC porous media with perovskite catalysts it was possible to lower the minimum stable equivalence ratio.
Public/Granted literature
Information query
Patent Agency Ranking
0/0