Fast deep neural network training
Abstract:
Methods, systems, and computer programs are presented for training a deep neural network (DNN). One method includes an operation for training a predecessor network defined for image recognition of items, where parameters of a predecessor classifier are initialized with random numbers sampled from a predetermined distribution, and the predecessor classifier utilizes an image-classification probability function without bias. The method further includes an operation for training a successor network defined for image recognition of items in a plurality of classes, where parameters of a successor classifier are initialized with parameters learned from the predecessor network, and the successor classifier utilizes the image-classification probability function without bias. Further, the method includes operations for receiving an image for recognition, and recognizing the image utilizing the successor classifier.
Public/Granted literature
Information query
Patent Agency Ranking
0/0