Fast deep neural network feature transformation via optimized memory bandwidth utilization
Abstract:
Deep Neural Networks (DNNs) with many hidden layers and many units per layer are very flexible models with a very large number of parameters. As such, DNNs are challenging to optimize. To achieve real-time computation, embodiments disclosed herein enable fast DNN feature transformation via optimized memory bandwidth utilization. To optimize memory bandwidth utilization, a rate of accessing memory may be reduced based on a batch setting. A memory, corresponding to a selected given output neuron of a current layer of the DNN, may be updated with an incremental output value computed for the selected given output neuron as a function of input values of a selected few non-zero input neurons of a previous layer of the DNN in combination with weights between the selected few non-zero input neurons and the selected given output neuron, wherein a number of the selected few corresponds to the batch setting.
Information query
Patent Agency Ranking
0/0